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ABSTRACT: A key objective of cognitive modeling research at the Air Force Research Laboratory’s Warfighter 
Training Research Division is to be able to explore the effects of background knowledge and task strategies on 
performance and learning of skills relevant to accomplishing the Air Force mission. In pursuit of that objective, 
this paper compares three variants of a computational process model of basic aircraft maneuvering. All three 
variants are embodied performance models implemented in the ACT-R cognitive modeling architecture. The model 
variants operate a Predator UAV Synthetic Task Environment (STE). Each model variant implements a different 
combination of background knowledge and task strategy for completing the basic maneuvering task. The three 
variants of the model are called Model Variant P (Performance only), Model Variant CP (Control and 
Performance) and Model Variant CFP (Control Focus and Performance). Model Variant P lacks the knowledge of 
control instrument settings typically available to expert pilots and only considers performance indicators in 
completing the basic maneuvering task. Model Variant CP has knowledge of control instrument settings needed to 
accomplish various performance objectives and uses that knowledge as part of a crosscheck strategy which 
includes attending equally to control and performance indicators. Model Variant CFP also has knowledge of 
control instrument settings, but has a different crosscheck strategy which includes focusing on control instruments 
until they are correctly set, in addition to normal crosschecking across control and performance indicators. This 
paper documents efforts to use these model variants to explore the relative effects of differences in knowledge and 
task strategy on pilot performance in UAV basic maneuvering.  

 
 
1. Introduction 
 
A key objective of cognitive modeling research at the Air 
Force Research Laboratory’s Warfighter Training 
Research Division (AFRL/HEA) is to be able to explore 
the effects of background knowledge and task strategies 
on performance and learning of skills relevant to 
accomplishing the Air Force mission. Currently, the 
division’s Performance and Learning Models (PALM) 
Research Program is focused on the use of a Synthetic 
Task Environment (STE) which includes a high-fidelity 
simulation of a Predator Uninhabited Air Vehicle (UAV) 
augmented with basic maneuvering, landing and 
reconnaissance tasks and data collection facilities. We are 
using the UAV STE as a testbed for conducting empirical 
research and creating embodied cognitive models of 
UAV pilot performance and learning. Ultimately, the 
goal is to use this and other models to develop modeling 

guidelines for detailed and psychologically realistic 
representations of human behavior in complex, dynamic 
warfighting domains. 
 
This paper will begin by setting the context for our 
computational cognitive modeling research through some 
background information on the STE, piloting a UAV, and 
the ACT-R cognitive modeling architecture which we are 
using. It then introduces the three model variants, Model 
Variant P (Performance Only), Model Variant CP 
(Control and Performance), and Model Variant CFP 
(Control Focus and Performance), and describes the 
representations and processes built into each variant of 
the model. The paper continues with a comparison of the 
performance of the model variants with each other and in 
the case of model variants CP and CFP, with human 
performance data. The paper concludes with a discussion 
of the relevance of the research for warfighter training. 
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2. Background on the UAV STE 
 
The core of the STE is a realistic simulation of the flight 
dynamics of the Predator RQ-1A System 4 UAV. This 
core aerodynamics model has been used to train Air 
Force Predator pilots at Indian Springs Air Field in 
Nevada. Built on top of the core Predator model are three 
synthetic tasks: the Basic Maneuvering Task, in which a 
pilot must make very precise, constant-rate changes in 
airspeed, altitude and/or heading; the Landing Task in 
which the UAV must be guided through a standard 
approach and landing; and the Reconnaissance Task in 
which the goal is to obtain simulated video of a ground 
target through a small break in cloud cover. The design of 
these synthetic tasks is the result of a unique 
collaboration between behavioral scientists and expert 
pilots of the UAV. The aim in developing the tasks was 
to identify important aspects of the UAV pilot’s overall 
task—aspects that tax the key cognitive and psychomotor 
skills required by a UAV pilot. They are tasks that lend 
themselves to laboratory study, yet do not fall prey to 
oversimplifications. The design philosophy and 
methodology are described in [1]. Tests using military 
and civilian pilots showed that experienced UAV pilots 
perform better in the STE than pilots who are highly 
experienced in other aircraft but have no UAV 
experience, indicating that the STE is realistic enough to 
tap UAV-specific pilot skill [2]. Figure 1 provides a view 
of the UAV STE. The UAV STE consists of a two 
monitor pilot station with attached stick (right hand), 
throttle (left hand) and rudder (not shown). 

 
Basic maneuvering is the focus of the current modeling 
effort. The task requires the UAV pilot to fly seven 
distinct maneuvers while trying to minimize root-mean-
squared deviation (RMSD) from ideal performance on 
altitude, airspeed, and heading. For each maneuver, a trial 
starts with a 10-second straight and level lead-in period 
as the pilot prepares to execute the maneuver. At the end 
of this lead-in period, the timed trial (either 60 or 90 
seconds) begins and the pilot is required to maneuver the 
aircraft at a constant rate of change with regard to one or 
more of the three flight performance parameters. The 
initial three maneuvers require the pilot to change one 
parameter while holding the other two constant. For 
example, in Maneuver 1 the goal is to reduce airspeed 
from 67 knots to 62 knots at a constant rate of change, 
while maintaining altitude and heading, over a 60-second 

trial. Subsequent maneuvers increase in complexity by 
requiring the pilot to fly trials that change in 
combinations of two parameters. Maneuver 4, for 
instance, is a constant-rate 180° left turn, while 
simultaneously increasing airspeed from 62 to 67 knots 
and holding altitude constant. The final maneuver 
requires changing all three parameters simultaneously, 
decreasing altitude from 15300 to 15000 feet, increasing 
airspeed from 62 to 67 knots, and changing heading left 
270° over a 90-second trial. 
 

Table 1: UAV Basic Maneuvers 
 

Maneuver Airspeed Heading Altitude 
1 Decrease Unchanged Unchanged 
2 Unchanged Right 180°  Unchanged 
3 Unchanged Unchanged Increase  
4 Increase Left 180° Unchanged 
5 Decrease Unchanged Decrease 
6 Unchanged Right 270° Increase 
7 Increase Left 270° Decrease 

 
During a maneuver the pilot sees only the Heads-Up 
Display (HUD) on the left monitor, and the compass rose, 
bank angle indicator, lead-in and trial clocks on the right 
monitor. A view of the HUD is shown in Figure 2. In the 
basic maneuvering task, the camera view out the nose of 
the UAV over which the HUD is normally superimposed 
is blacked out to simulate instrument flying. The various 
digital and analog indicators include (from left to right): 
Angle of Attack (AOA), Airspeed, Heading (bottom 
center of display), Vertical Speed Indicator (VSI), RPM 
(indicating the throttle setting), and Altitude. The cross in 
the middle of the display is the reticle, which represents 
the nose of the aircraft and is fixed in the vertical and 
horizontal center. The hatched line crossing the reticle is 
the horizon line, which moves up and down relative to 
the reticle to indicate changes in pitch, and also rotates 
around its center point to indicate changes in bank.  

 
At the end of a trial, the results for the altitude, airspeed 
and heading deviations are displayed graphically, with 
actual and desired values on each performance parameter 
plotted across time. Quantitative RMSDs provide 
numerical feedback for tracking performance.  A view of 
the feedback screen following completion of Maneuver 1 
is shown in Figure 3. 

 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: UAV STE 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Heads Up Display (left monitor) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 Feedback screen (right monitor) 



3. Piloting the UAV. 
 
The instrumentation provided with most aircraft, 
including the UAV, consists of two different types of 
indicators: performance indicators and control indicators. 
Performance indicators reflect the behavior of the aircraft 
and include airspeed, heading, altitude and vertical speed 
indicators. Control indicators reflect the settings of the 
controls which affect the behavior of the aircraft and 
include pitch, bank and engine speed (RPM) indicators.  
Adjustments to the controls have a first order effect on 
the control indicators and a second order effect on the 
performance indicators. That is, a control adjustment will 
immediately be reflected by the relevant control 
indicator. This control adjustment will affect the behavior 
of the aircraft, which will be reflected in the performance 
indicators as a second order effect after some delay. 
According to the Air Force Manual on Instrument Flight 
[6], a key to expert flight performance is knowledge of 
the appropriate control settings needed to obtain desired 
flight performance. For example, a pitch of 3 degrees and 
an engine RPM of 4300 will maintain straight and level 
flight of the UAV at 67 knots over a range of altitudes 
and external conditions. The expert pilot need only set the 
appropriate pitch and engine RPM to obtain the desired 
performance, subject to monitoring and adjustment based 
on variable flight conditions like wind and air pressure. 
 
Lacking knowledge of control settings, novice pilots must 
rely on the performance indicators to control the aircraft. 
However, it is quite difficult to control an aircraft with 
just this knowledge. Often, a novice pilot will overcorrect 
based on the delay in responsiveness of a performance 
indicator, requiring a subsequent adjustment in the 
opposite direction. The result is frequently an oscillation 
in the performance of the aircraft commonly known as 
Pilot Induced Oscillation (PIO). There is also a 
significant interaction between pitch and engine RPM 
adjustments, and to a lesser extent bank adjustments, 
which further complicates piloting of the aircraft. 
 
Besides knowledge of control instrument settings, expert 
pilots are vigilant in maintaining awareness of the status 
of all indicators. This is typically accomplished by means 
of a crosscheck across indicators employing either a hub 
and spoke pattern or a round robin pattern or some 
mixture of the two. During this crosscheck, it is important 
not to focus too much attention on performance indicators 
and to keep control indicators in the crosscheck.  
 
 
 
 

4. Background on ACT-R. 
 
The Atomic Components of Thought – Rational (ACT-R) 
cognitive modeling architecture and development 
environment [4,5] is a powerful, yet psychologically 
constrained, tool for the development of computational 
cognitive models.  ACT-R is being used by researchers 
around the globe to develop and test cognitive models 
covering a wide range of behaviors.   
 
ACT-R Version 5 is a Common Lisp based 
implementation of the ACT-R architecture. It includes a 
production system integrated with a declarative memory 
system.  The distinction between procedural and 
declarative memory is a cornerstone of ACT-R and is 
supported by extensive empirical evidence.  ACT-R is a 
hybrid architecture which provides symbolic productions 
and declarative memory chunks and subsymbolic 
mechanisms for production selection and declarative 
memory chunk activation and retrieval.  Production 
selection and declarative memory chunk activation and 
selection are implemented as highly parallel processes, 
however, once selected, production execution is serial—
only one production can be executed at a time. These 
symbolic and subsymbolic components and mechanisms 
provide the cognitive infrastructure needed to model 
human behavior at a low enough grain size to model the 
time course of cognition at the millisecond level.  This 
makes it possible to model real-time human performance 
in ACT-R.  ACT-R Version 5 also provides a perceptual-
motor system for interacting with the external world 
which makes it possible to develop embodied models of 
cognition.  The interface between the production system, 
declarative memory and perceptual-motor system is 
coordinated by a collection of buffers.  Recent research 
efforts have focused on mapping the ACT-R architecture 
to various brain structures and fMRI studies have been 
conducted to validate that mapping. 
 
The UAV pilot model represents real challenges and 
opportunities for the use of ACT-R in the development of 
computational cognitive models.  The challenge of 
integrating ACT-R with an existing real-world simulation 
environment has not been undertaken by many 
researchers.  The complexity of the task of piloting a 
UAV is significantly greater than the complexity of the 
laboratory tasks that provide the historical roots of the 
ACT-R architecture and its modeling community.  The 
opportunity to take advantage of recent enhancements to 
ACT-R that support embodied cognition offers the 
prospect of more ecologically valid models, and in fact 
makes possible the entire research program of which the 
work described here is a component.   



5. The Three Model Variants 
 
In the interest of exploring the effects of differences in 
domain knowledge and task strategies on performance, a 
model of basic maneuvering has been implemented with 
three distinct variants. The three variants of the model are 
called Model Variant P (Performance only), Model 
Variant CP (Control and Performance) and Model 
Variant CFP (Control Focus and Performance).  
 
Model Variant P lacks the knowledge of control 
instrument settings typically available to expert pilots and 
as a result only considers performance indicators and the 
bank angle indicator in completing the basic maneuvering 
task. Knowledge of bank angle settings is provided by 
explicit instruction to participants and is assumed to be 
available to Model Variant P. Model Variant P centers its 
crosscheck on the clock and selects from among the 
following indicators: airspeed, heading, altitude, vertical 
speed and bank angle. Figure 4a shows the conceptual 
design of Model Variant P. During an attend-assess-
adjust cycle, Model Variant P selects an indicator to 
attend, locates the indicator on the HUD or right monitor 
(for bank angle) and encodes its value. Model Variant P 
then retrieves the desired value for that indicator from 
memory, compares the desired value to the current value, 
and sets a qualitative deviation (e.g. small, large, very 
large) based on the difference between the desired and 
the current value. The qualitative deviation is then used to 
assess the need for a control adjustment, and if needed, an 
adjustment is made. Following this, another indicator is 
selected and the attend-assess-adjust cycle is repeated. 
  
Unlike Model Variant P, Model Variant CP has 
knowledge of control instrument settings needed to 
achieve various performance objectives and uses that 
knowledge as part of a crosscheck strategy which 
includes attending to both control and performance 
indicators.  Figure 4b shows the conceptual design for 
Model Variant CP.  
 
Knowledge of appropriate control instrument settings and 
how to use them for improved aircraft control 
distinguishes expert pilots from novice pilots. The first 
comparison (Model Variant P vs. Model Variant CP) is 
intended to explore this knowledge difference. 
 
Although Model Variant CP has knowledge of 
appropriate control settings, it does not focus on a control 

indicator until the correct value is achieved.  Rather, it 
makes a control adjustment and continues with the 
normal crosscheck without checking to see if the 
adjustment has had the intended effect until the next time 
the control indicator is attended as part of the normal 
crosscheck.  
 
Like Model Variant CP, Model Variant CFP has 
knowledge of appropriate control instrument settings. 
However, Model Variant CFP uses that knowledge as 
part of a crosscheck strategy which includes focusing on 
control instruments until they are properly set, in addition 
to performing a normal crosscheck across control and 
performance indicators.  Figure 4c shows the conceptual 
design for Model Variant CFP. In this design there are 
two distinct attend-assess-adjust cycles: (normal) 
crosscheck and establish-control (or control focus). The 
normal crosscheck attend-assess-adjust cycle is the same 
as that of Model Variant CP. The establish-control 
attend-assess-adjust cycle is where Model Variant CFP 
focuses on a single control indicator until the value of 
that indicator is qualitatively close enough to the desired 
value (e.g. very small deviation). For Model Variant CFP, 
the establish-control attend-assess-adjust cycle is entered 
at the start of a trial in order to establish straight and level 
flight and whenever the qualitative deviation of a control 
indicator is assessed to be large (e.g. large deviation). It 
should be noted that during the lead-in period, Model 
Variant CP also only looks at the control indicators in 
order to establish straight and level flight. This is 
accomplished by restricting the indicators in the normal 
crosscheck to just the control indicators during the lead-in 
period and does not involve focusing on a single control 
indicator until its value is appropriately set, as Model 
Variant CFP does. 
 
The second comparison (Model Variant CP vs. Model 
Variant CFP) is intended to explore the effect on 
performance of using a strategy of focusing on control 
instrument settings. To some extent, focusing on control 
instruments disrupts the normal crosscheck across 
performance and control indicators. Despite this 
disruption, focusing on control instruments may improve 
performance since it allows the pilot to complete the 
correct setting for a control instrument prior to resuming 
a normal crosscheck. 
 



 

                     Figure 4a: Model Variant P                                                Figure 4b: Model Variant CP 

 

Figure 4c: Model Variant CFP 
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5.1 Declarative Knowledge 

The model variants have declarative knowledge in 
addition to that described above. The most important of 
these declarative knowledge chunks are discussed below. 
 
The goal chunk contains the knowledge, or links to the 
knowledge, needed to fly the UAV. It is organized 
hierarchically in terms of the top-level knowledge 
relevant to flying in general, knowledge relevant to 
managing control instruments, and knowledge relevant to 
monitoring performance indicators. A common modeling 
practice in ACT-R models is to restrict the size of 
declarative memory chunks to 3-5 slots (or pieces) of 
information. In the case of the goal chunk for the UAV 
pilot model, however, we found this to be unmanageably 
restrictive. There is just too much information about the 
pilot’s cognitive state and the aircraft’s physical state that 
needs to be available in the goal chunk for decision 
making.  
 
On the other hand, having all aircraft state data available 
to the model variant at all times would be too powerful. 
We are not creating an autopilot. We are creating model 
variants intended to replicate actual human performance. 
Therefore, the productions are designed in such a way 
that, at any one time, only a few slots in the goal chunk 
are actually used. For example, if the model variant has 
just attended to airspeed, then the current-airspeed slot is 
available to the model variant. Slots with values from 
previous attend-assess-adjust cycles are not assumed to 
be available, and new values must be encoded from the 
indicators or retrieved from memory. Thus, although the 
goal chunk has a sizeable number of slots, only a few of 
them have available values at any one time.  

 
During the (normal) crosscheck attend-assess-adjust 
cycle, each model variant must decide which indicator to 
attend next. Transitions from one indicator to the next are 
modeled with crosscheck-intent chunks that map from the 
current indicator to the next indicator. Retrieval of a 
crosscheck-intent chunk determines the next indicator to 
be attended based on the current indicator, the maneuver 
being performed, and the time-segment. Allowing the 
maneuver which is being performed to influence this 
selection results in more frequent attention to indicators 
whose desired values are changing during the course of 
the maneuver. However, Model Variant P does not 
consider the maneuver in selecting the next indicator 
since it only attends to a few performance indicators and 
the clock. Based on guidance from a subject matter expert 
(SME), not all possible transitions are available, but 
multiple transition chunks are typically matched by the 
production which selects the next transition and when this 

occurs the chunk selection is determined stochastically by 
a combination of chunk activation and activation noise. 
Model Variants CP and CFP center their crosscheck on 
the horizon line/reticle, primarily using a hub and spoke 
pattern, and the horizon line/reticle is frequently attended. 
Model Variant P, which is not able to use the control 
information provided by the horizon/line reticle, centers 
its crosscheck on the lead-in and trial clocks and 
frequently visits these indicators. 
 
Model Variants CP and CFP have knowledge of the 
control settings needed to establish straight and level 
flight at the start of a trial. They also have knowledge of 
the appropriate control instrument settings at given points 
in a maneuver (e.g. 15 seconds, 30 seconds, 45 seconds, 
60 seconds). All model variants have knowledge of the 
altitude, airspeed, heading, and VSI (performance) and 
bank angle (control) indicator settings at similar points in 
a maneuver since this information is explicitly provided 
in the instructions for each maneuver. 
 
5.2 Procedural Knowledge 
 
A crosscheck attend-assess-adjust cycle includes the 
serial performance of a sequence of productions starting 
with the selection of an indicator for attention, finding 
and encoding the value of that indicator, retrieving the 
desired value, comparing the actual value to a desired 
value, assessing the deviation, and making a control 
adjustment, if needed. The typical time to complete an 
attend-assess-adjust cycle is in the neighborhood of 500-
1000 msec. According to Still & Temme (2001) “It is not 
unusual for even trained pilots to spend as much as 0.5 
sec viewing a single instrument and durations of two 
seconds or more are to be expected even from expert 
pilots in routine maneuvers.” [3]  
 
An establish-control attend-assess-adjust cycle does not 
need to select a control instrument since this is pre-
specified at the start of the cycle. Retrieval of the desired 
setting for the control instrument is only necessary on the 
first loop through the cycle. The desired value is available 
in the goal chunk on subsequent loops so long as the 
same control instrument is in focus. Otherwise, the 
establish-control attend-assess-adjust cycle is patterned 
after the crosscheck attend-assess-adjust cycle. 
 
At the beginning of a maneuver, following the lead-in 
period, all model variants execute a series of productions 
to transition from the straight and level lead-in period to 
the maneuver period. These transitions must be learned 
since they are maneuver specific and do not reflect 
general aviator knowledge. However, since we are not 
modeling learning they are provided to the model 

 



variants. The execution of these productions is triggered 
y perception of an auditory beep which occurs at the 

eep relies on ACT-R’s audition module. Learning these 

he ACT-R parameters are organized into subsystems. A 

b
start of a trial following the lead-in period, or by 
recognition that the lead-in period is nearing completion 
following attention to the lead-in clock. Perception of the 
b
transitions is crucial to adequate performance on the basic 
maneuvers even for expert pilots.  
 
5.3  Parameter Settings 
 
A variety of parameters in ACT-R can be modified to 
influence the behavior of a model [4, 5]. Most parameters 
have established defaults or commonly used values. One 
of the long-term architectural goals in the ACT-R 
community is to settle on default, or at least “commonly 
accepted,” values for all parameters, in order to further 
constrain model implementations. This research has 
benefited from that goal.  
 
T
subsystem is enabled in order to take advantage of the 
parameters it includes. In the model variants described 
here, the subsymbolic computation subsystem and the 
base level learning subsystem are enabled and the 
parameters within these subsystems have been set to 
default or commonly accepted values as shown in table 2. 
 

Table 2: UAV Pilot Model Parameters 
 

         Parameter   Value 
Utility Noise (σU) 1      (common) 
Goal Weight (W) 1      (default) 
Latency Factor (F) 1      (default) 
Retrieval Threshold (τ) 1      (common) 

ecay Rate (d) 0.5   (default) D
Activation Noise (σA) 0.25 (common) 

 
The base level learning component is used to establish 
the base level activation of declarative memory chunks 
corresponding to the location of control and performance 
indicators. These base levels correspond to those 
expected for expert UAV pilots. Activation noise is used 
to add stochasticity to the selection of the crosscheck-
intent chunks that determine which indicator will be 
attended to next. The partial matching and other learning 
subsystems of ACT-R and their associated parameters are 
not currently being used. 
 
6. Verification of Knowledge and Strategy 
Differences. 
 

As verification that the three model variants really reflect 
the knowledge and task strategy differences being 
considered, Figure 5 compares the attention fixation 
frequencies of each variant. 

 
Figure 5: Attention Fixation Mean % for P, CP and CFP 
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s Figure 5 shows, Model A

significantly more time attending to control indicators 
and much less time attending to performance indicators, 
relative to Model Variant P, t(417) = 58.00, p < .001 and 
t(417) = 38.39, p < .001 respectively. Although much less 
dramatic, Model Variant CFP spends significantly more 
time attending to control indicators than Model Variant 
CP, t(417) = 5.49, p < .001, and significantly less time 
attending to performance instruments, t(417) = 4.13, p < 
.001. These differences in attention fixation frequency 
reflect the knowledge and task strategy comparisons of 
interest. 
 
7. Comparing Knowledge D
 
To compare the effect of knowledge of control instrument 
settings on performance, Model Variant P is compared to 
Model Variant CP. To evaluate overall performance on a 
trial, a composite measure of deviation from desired 
altitude, airspeed, and heading was computed. On each 
trial, RMSDs were computed for altitude, airspeed, and 
heading. Because these performance measures are on 
different scales, RMSDs were converted to z-scores 
within class. The resulting standardized RMSDs were 
dded together for each trial, resulting in a staa

sum RMSD. Figure 6 presents the Mean and 95% 
Confidence Interval for overall performance of the model 
variants on 20 trials in each of the seven basic 
maneuvers, averaged across trials within a maneuver.  
 
As Figure 6 shows, a significant main effect of model 
variant on performance is observed, F(1,266) = 94.01, p 
< .001, with performance of Model Variant CP 

Time

Control

Performance

M
ea

n 
% 50%

25%

0%

P

CP

CFP

 o
f F

ix
at

io
ns 100%

75% Model



significantly better than Model Variant P on 6 of the 7 
maneuvers. On maneuver 7, the mean performance of 
Model Variant P is slightly better, although within the 
95% Confidence Interval of Model Variant CP.  

 
Figure 6: Model P vs. Model CP 
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novice pilots. But when a sizeable adjustment is needed, 
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a performance indicator if that adjustment moves the 
control indicator away from the desired setting. This 
counterbalancing helps Model CP avoid over-correcting 
and destabilizing the aircra
that the control settings be correct in order to maximize 
performance. One possible explanation for the relatively 
good performance of Model Variant P compared to 
Model Variant CP on maneuver 7 is that Model Variant 
CP was not using optimal control settings. However, as 
Figure 6 shows, it is the relatively good performance of 
Model Variant P on maneuver 7 and not the poor 
performance of Model Variant CP that contributes most 
to this result. 
 
8. Comparing Strategy Differences 
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crosscheck task strategy on performance, Model Variant 
C
the performance results of these model variants across all 
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Figure 7: Model CP vs. Model CFP 
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and putting the aircraft into oscillation.). This makes it 
difficult for Model Variant CP to recover from large 
deviations and the performance of Model Variant CP 
degrades significantly on the more difficult maneuvers 
(especially those involving heading changes). 
 
9. Comparison with Human Data  
 
The comparison of model variants is useful to the extent 
that the model variants accurately model the aspects of 
human performance under consideration. odel 
Variant P an accurate model of novice pilot or at 
least with respect to the lack of knowledge of control 
instrument settings? Does the comparison odel 
Variant P with Model Variant CP reflect this k ledge? 
Is Model Variant CP or CFP a better model of expert 
pilot behavior with respect to the control focus task 
strategy?  
 

 comparison of the attention fixation frequencies of 
odel Vari frequencies 

ollected fr esearch on 

g 

 trial, RMSDs for altitude, airspeed, and 
eading were screened for outliers, converted to z-scores, 

SDs. Next, 
rough a 

 RMSDs for all passed trials of each 

Is M
 behavi

 of M
now

A
M ant CFP with the eye fixation 

om two SMEs in preliminary rc
maneuvers 1, 2 and 3 suggests that Model Variant CFP 
focuses more attention on control indicators than is 
evident in the eye fixation data from the two SMEs, 
although there is considerable variability between the 
SMEs. Model Variant CP, which does not focus on 
control instruments, comes closer to modeling the 
fixation frequencies of these two SMEs.  However, large 
variability between the two SMEs on the frequency of 
fixations among indicators motivated a study to collect 
data from seven additional SMEs on all seven maneuvers.   
Performance data from this larger sample of SMEs are 
compared to the model variants below, although eye 
fixation data from these SMEs are yet to be analyzed.  
 
In the interest of keeping the three model variants 
comparable, all three variants were implemented with 
minimal variation other than the variation relevant to the 
comparisons, namely, knowledge of control instrument 
settings and control focus task strategy. This meant that 
the performance of Model Variant P could not be 
improved by changing the initial control adjustments at 
the start of a trial to compensate for the failure of Model 
Variant P to achieve straight and level flight during the 
lead-in period—although novice pilots may learn such 
compensatory settings. Moreover, even novice pilots 
attain reasonable performance on the basic maneuvers 

iven enough trials, however, there is a huge learning
curve, with performance on early maneuvers quite 
abysmal. Given the wide range of performance variability 
from trial to trial and choices made to keep the model 
variants comparable, it is difficult to determine what 

human data could be compared to that of Model Variant 
P. As a result, Model Variant P will not be directly 
compared to human data.  
 
To validate the behavior of Model Variants CP and CFP, 
we compare the performance of the model variants 
against the performance of the seven SMEs in the larger 
study mentioned above. Figure 8 compares the 
performance of the SMEs against Model Variants CP and 
CFP on all seven maneuvers. A composite measure of 
performance was computed to compare overall 
performance among SMEs and Model Variants. For each 
SME on each
h
and summed to generate standardized sum RM

 make model and SME data comparable, thto
simple linear transformation, model data for each 
performance measure were converted to z-scores using 
the same means and standard deviations that were used to 
compute z-scores for SME data.  The resulting z-scores 
on RMSDs for altitude, airspeed, and heading were added 
together. Finally, aggregate means were computed on 
standardized sum
SME on each maneuver, and for all trials of each model 
on each maneuver. Thus, Figure 8 depicts means and 
95% confidence intervals of standardized sum RMSDs 
for a sample of 7 SMEs on passed trials on each 
maneuver. Depicted for Model Variants CP and CFP on 
each maneuver are means of standardized sum RMSDs 
computed from the 20 trials completed.  Mean 
performance of model variants CP and CFP can be 
considered point predictions of performance of highly 
competent UAV pilots implementing different control 
focus strategies.  
  

Figure 8: Model Variants CP and CFP vs. SMEs 
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As Figure 8 shows, the behavior of Model Variant CFP 
falls within the 95% confidence interval of the SMEs on 
trials 2, 3, 4, 6 and 7. Model Variant CFP is significantly 
better than the SMEs on maneuver 1 and significantly 
worse than the SMEs on maneuver 5. There appears to be 
 learning effect not captured in the model in that Model 

aneuvers 1,2 
nd 3 and worse than the SMEs on maneuvers 5, 6 and 7. 

odel Variant CP does not (see Figure 9). 

rs 

mportant to overall 
erformance.  

ss.  

ills 
(AFRL-HE-AZ-TR-2002-0026). Mesa, AZ: Air 

a
Variant CFP does better than the SMEs on m
a
Model Variant CP only comes close to SME performance 
on maneuver 3 and is significantly worse than SME 
performance on all maneuvers except maneuver 1. It 
should be noted that the SME data are for passed trials 
only—which further avoids problems with outliers and 
minimizes learning effects—whereas the model data is 
for all trials. If we aggregate across maneuvers as well as 
trials within maneuver, we see that Model Variant CFP 
falls well within the confidence interval of the SMEs, 
whereas M
 

 
Figure 9: Performance data aggregated across maneuve
 
Overall, Model Variant CFP compares much better to 
SME performance than does Model Variant CP. How 
then to explain the observation in our preliminary 
research that Model Variant CFP attends to control 
indicators more than our two SMEs on maneuvers 1, 2, 
and 3? One of those SMEs almost never attended to the 
RPM indicator. How then did this SME control the 
throttle setting? This SME may have been relying on 
feedback from the throttle itself, rather than the RPM 
indicator, to control the throttle. Expert pilots have 
knowledge of the position of the arm in setting the 
throttle and stick and receive proprioceptive feedback 
from these instruments. ACT-R does not currently 
support the modeling of proprioceptive feedback. As a 
result, Model Variant CFP (and CP) must rely 
exclusively on the information provided by the control 
indicators to manage control instrument settings. 

Nonetheless, focusing on control instrument settings—
whether via control indicators or via proprioceptive 
feedback—is likely to be i
p
 
10. Relevance to Pilot Training 
 
The analysis of the performance of the model variants 
suggests that knowledge of control instrument settings 
combined with a control focus strategy leads to the best 
performance on the basic maneuvers. Whether or not a 
control focus strategy is used, knowledge of control 
instrument settings is crucial to pilot performance. 
Without this knowledge, Model Variant P is unable to 
maintain stable aircraft behavior on many trials. 
 
The comparison of the three model variants demonstrates 
the utility of using computational process models to 
assess the effects of knowledge and task strategy on 
performance. Computational process models can be used 
to conduct very precisely controlled studies of the effects 
of knowledge and strategy differences on human 
performance in complex environments. Without such 
models, those studies require human participants that 
must be carefully trained to have the desired knowledge 
or use the desired strategy. The use of human participants 
is considerably more time consuming and expensive, and 
considerably less well controlled. The experimenter has 
less confidence that the human participants are using the 
desired knowledge/strategy. Once the relative merits of 
different knowledge and task strategies are assessed via 
computational cognitive models, the results can be used 
to make changes to training programs in order to improve 
warfighter readine
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